
 

Abstract—The paper presents an improved three-
dimensional mechanical-electrical-thermal coupled model for 
electrical interconnects. It combines a FEM mechanical analysis 
with a Cell Method approach for the thermal-electrical analysis 
that is based on a mortar type Domain Decomposition Method. 
The roughness of the contact surfaces is taken into account by 
means of a statistical formulation that can easily embedded into 
the Cell Method model. The statistical parameters depend on 
the apparent contact pressure and surface, which are assessed 
with the FEM analysis. The model has been validated both 
numerically and experimentally on a classical sphere-plane 
contact problem, where all relevant physical quantities have 
been determined and compared. 

I. INTRODUCTION 

A major issue in designing electrical interconnects 
consists in assessing contact resistance and temperature rise 
due to the localized Joule heating at the contact interfaces, 
which call for numerical analysis tools able to simulate 
multiscale and fully coupled electrical, thermal, and 
mechanical effects. A novel domain decomposition method 
(DDM) for analyzing three-dimensional (3D) electro-thermal 
contact problems has been recently proposed [1]. This DDM 
allows the computational domain to be split into subdomains 
(e.g. contacting members) and continuity between them is 
enforced by dual Lagrange multipliers defined on the 
so-called mortar surface. Field problems inside the bulk 
regions are discretized with the Cell Method (CM) thus 
resorting directly to algebraic equations. Voltage and 
temperature jumps across the contact are modeled with 
constitutive equations accounting for microscopic contact 
effects. The DDM is here combined with a FEM code in 
order to model contact mechanics as well.  

II. CONTACT PHYSICS MODEL  
Conducting metals used in electrical interconnectors 

typically undergo a locally plastic deformation. Therefore a 
realistic estimate of the stress state around contact interfaces 
requires a non-linear elastoplastic model. The yield surface 
can be estimated by using the Von Mises isotropic yield 
criterion [2]: 

3 ⋅σ −Y k( ) = 0  (1) 

where k  the kinematic hardening parameter, in the case of 
one-dimensional analysis Y(k)  equals the yield stress, and: 
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being σ the stress tensor. Fig. 1 shows the stress-strain law 
adopted to simulate kinematic hardening in the case of brass 
material. 

The FEM code simulates the elastoplastic deformation of 
members pressed together. In the case of non-planar 
contacting surfaces such analysis provides the shape and size 
of the apparent (macroscopic) contact area Aa and pressure p 
[3]. The contact search algorithm relies on the Augmented 
Lagrangian formulation described in [4], whereas the 
mechanical analysis in bulk regions is performed under the 
small strain assumption. 
 

      
Fig. 1. Material stress-strain constitutive law. 

 
 

Fig. 2. Microscopic contacts due to the surface roughness: The distance d 
between the mean planes depends on the applied force F. 

 
According to Holm’s theory described in [5] contacts 

occur in a number nc of small surfaces called a-spots so that 
the actual contact area Ac is much smaller than Aa (Fig. 2). 
Field lines squeezes through a-spots causing a local increase 
of resistivity, producing the constriction resistance. The total 
contact resistance can be estimated by means of a statistical 
approach that bridges the microscopic contact physics to the 
meso-scale discretized model [6][7], and defines the total 
constriction resistance as a function of parameters such as 
surface roughness, material hardness, and pressure p. 

By assuming a Gaussian distribution of micro-contacts 
and a locally plastic deformation, the mean dimensionless 
separation gap ξ=d/dmax can be expressed as: 
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 (3) 

where r is the rms roughness, m is the mean absolute slope 
and c1, c2 are correlation coefficients. The constriction 
electrical conductivity (and similarly the thermal one) is then 
computed by means of: 

 (4) 

where H is Mayer’s indentation hardness. The total 
constriction resistance so obtained is added with a film 
resistance accounting for additional ohmic losses due to 
surface contamination. 

III. NUMERICAL MODEL  
The contact model is embedded into the constitutive 

relationships of the DDM formulation. According to the CM, 
in order to introduce Lagrange multipliers a new reference 
frame must be defined, namely the mortar surface, that in our 
model is generated from the discretized surfaces of 
contacting members. Electric potentials and temperature 
jumps at the contact interface are due to the contact 
resistances obtained from (4), which are included in the 
constitutive matrices Mσc and Mλc. Coupled electric and 
thermal equations of bulk and contact regions are assembled 
in the following non-linear system, that extends the contact 
coupled model previously developed [1]: 
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where v is the electric potential array, θ the temperature 
array. Eq. (5) is solved iteratively after having eliminated 
Lagrange multipliers, i.e. currents  and heat fluxes .  

IV. EXPERIMENTAL VALIDATION 

The numerical method has been tested both numerically 
and experimentally on a sphere-plane contact geometry [3]. 
Fig. 3 shows the test set-up used in the experiments: 
cylindrical copper or brass specimens with members of the 
same diameter (9 cm) have been used. As a first step, 
specimen surfaces have undergone roughness profile 
measurements (Fig. 4), aimed at determining the statistical 
parameters required in the contact model described by (3) 
and (4): ral=0.171 µm, mal=1.313, rbr=0.158 µm, mbr=1.254. 

The mechanical load F has been increased step after step 
and a current I ranging from 0 to 1 kA has been applied at 
each step. At every F-I condition the steady state temperature 
θ(P,t) and electric potential v(P,t) distributions are measured 
along the member surfaces, together with integral quantities: 
F, I, deformation δ, and contact voltage UC. 

Once the correlation between F-I and θ(P,t) and v(P,t) 
distributions has been assessed experimentally, they have 
been compared with results computed with the numerical 
model. Finally measured and computed field distributions 
have been checked against the Kohlrausch’s fundamental 
law, that provides the contact voltage drop UC as a function 
of the maximum temperature θm at the contact interfaces and 
bulk temperature θo: 

  
UC = 2 L (θm

2 −θo
2 )  (6) 

A thorough discussion of the 3D multi-physic numerical 
analysis with its last improvements and experimental 
validation will be presented in the full paper. 

 

 
 

Fig. 3. Sphere-plane contact geometry used for the experimental validation. 
 

 
Fig. 4. Measured roughness profiles of the contact surfaces in the case of 

aluminum (upper) and brass (lower) specimens. 
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